Stepwise Addition of $[Re_2(\mu-H)_2(CO)_8]$ to a Labile Pt(0) Complex. X-Ray Crystal **Structures of the Bow-tie Clusters** $[Re_4Pt(\mu-H)_{6-n}(CO)_{16}]^n$ **(** $n = 0, 1$ **)**

Gianfranco Ciani,^a Massimo Moret,^a Angelo Sironi,*a Patrizia Antognazza, ^b Tiziana Beringhelli, ^b Giuseppe **D'Alfonso,*b Roberto Della Pergola** *b* **and Anna Minojab**

a lstituto di Chimica Strutturistica Inorganica, Via Venezian 21, 20133 Milano, Italy ^bCentro CNR Sintesi e Struttura Complessi Metalli di Transizione, Dipartimento di Chimica lnorganica e Metallorganica, Via Venezian 2 1, 20 133 Milano, Italy

The stepwise reaction of the ethylene-like molecule $[Re_2(\mu-H)_2(CO)_8]$ with $[Pt(cod)_2]$ (cod = cycloocta-1,5-diene) affords the triangular cluster $[Re_2Pt(\mu-H)_2(CO)_8(cod)]$ and then, under H₂, the pentanuclear species [Re₄Pt(µ-H)₆(CO)₁₆], with a bow-tie geometry of the metal cluster*,* which in basic media deprotonates reversibly to $[Re_4Pt(\mu-H)_5(CO)_{16}]^-$.

We are currently interested in the synthesis of mixed metal Pt-Re clusters using labile Pt(0) complexes and small Re clusters as starting materials. The ability of $PtL₂$ fragments to add ethylene-like¹ and even ethane-like² molecules allowed us

to obtain the $[Re_2Pt(\mu-H)_2(CO)_8(PPh_3)_2]^3$ and $[Re_2Pt_n(\mu-P)$ CO)_{2n}(CO)_{10-2n}(PPh₃)_n] $(n = 1,2,3)^2$ clusters by reaction of $[Pt(PPh₃)₂(C₂H₄)]$ with $[Re₂(\mu-H)₂(CO)₈]$ **1** and $[Re₂(CO)₁₀],$ respectively.

Scheme 1

Fig. 1 ORTEP drawing of $[Re_4Pt(\mu-H)_6(CO)_{16}]$ 3, with partial labelling scheme. The molecule lies on a crystallographic inversion centre (primed and unprimed atoms are related by the $-x$, $-y$, \cdot symmetry operation) but the idealized symmetry is higher, namely C_{2h}. Relevant bond parameters are: Pt-Re(1) 2.901(1), Pt-Re(2)
2.911(1), Re(1)-Re(2) 3.192(1) Å; Pt-Re(2)-Re(1)-C(11) -108.9,
Pt-Re(2)-Re(1)-C(14) 72.3, Pt-Re(1)-Re(2)-C(21) 109.6, Pt- $Re(1)-Re(2)-C(24) -71.6$, C(13)-Re(1)-Re(2)-C(23) 0.9°.

We report now the stepwise addition of 1 to $[Pt(cod)_2]$ (cod cycloocta-1,5-diene), which, depending on the reaction conditions and the stoichiometric ratio, affords tri- or pentanuclear species (Scheme **1).**

Spectroscopic monitoring† shows that the formally unsaturated $[Re_2(\mu-H)_2(CO)_8]$ (32 valence electrons, v.e.s) reacts quantitatively and instantaneously, at 0 *"C,* with the electronprecise (18 v.e. s) [Pt $(c \text{od})_2$], giving the triangular cluster $[Re₂Pt(μ -H)₂(CO)₈(cod)] (compound 2, 46 v.e.s), with trans$ fer of the unsaturation from the $Re_2(\mu-H)_2$ moiety to the Pt atom **(16** local v.e.s). The substitution of the remaining cod with a second $[Re_2(\mu-H)_2(CO)_8]$ molecule would imply a further electron depleting of the Pt centre, as observed in the reaction of $[Rh_2(\mu\text{-}CO)_2(C_5Me_5)_2$ with $[Pt(C_2H_4)_3]$,⁴ affording the 74 v.e.s species $[Rh_4Pt(\mu\text{-}CO)_4(C_5Me_5)_4]$. In the present case the reaction of **2** with a second molecule of **1** requires the presence of H_2 , in order to provide the Pt atom with the two electrons lost in the substitution of the diene by $[Re_2(\mu-H)_2(CO)_8]$. The reaction between 2 and one equivalent of compound 1, under H₂, at 0 °C, affords in fact as main product (yields *ca.* 50%) the hexahydridic pentanuclear $[Fe_4Pt(CO)_{16}]$ ²⁻⁵ It appears therefore that the $(CO)_4Re(\mu H)Re(CO)₄$ moieties are unable to furnish the steric shielding or the long range interactions usually stabilizing **14** v.e.s Pt centres (semibridging carbonyls⁴ or agostic hydrogens⁶). cluster $[Re_4Pt(\mu-H)_6(CO)_{16}]$ 3, with 76 v.e.s, as

Compound 3 reversibly reacts with methanolic NEt₄OH transforming into its conjugate base $[Re_4Pt(\mu-H)_5(CO)_{16}]$ - 4, where the three Pt bound hydrides are rapidly scrambling on the four Re-Pt bonds, as shown by the presence, in the NMR spectrum, of only one signal (for these hydrides) down to **193 K.**

Compounds **3** (Fig. **1)** and **4** (Fig. **2)** have been both

Fig. 2 ORTEP drawing of $[Re_4Pt(\mu-H)_5(CO)_{16}]^-$ 4, with partial labelling scheme. Relevant bond parameters are: Pt-Re(1) 2.888(1), Pt-Re(2), 2.859(1), Pt-Re(3) 2.786(1), Pt-Re(4) 2.853(1), Re(1)- $Re(2)$ 3.168(1), $Re(3)$ - $Re(4)$ 3.147(1) Å; Pt- $Re(2)$ - $Re(1)$ -C(1) -64.6, Pt-Re(2)-Re(l)-C(14) 115.5, Pt-Re(l)-Re(2)-C(21) 90.8, Pt-Re(l)-Re(2)-C(24) - 83.5, Pt-Re(4)-Re(3)-C(3 1) - 85.6, Pt- $Re(4)-Re(3)-C(34)$ 90.4, Pt-Re(3)-Re(4)-C(41) 108.4, Pt-Re(3)- $Re(4)$ –C(44) –69.7, C(13)– $Re(1)$ – $Re(2)$ –C(23) 30.6, C(33)– $Re(3)$ – $Re(4) - C(43)$ 24.1°.

structurally characterized by single crystal X-ray analysis. \ddagger They share the bow-tie geometry of the metal clusters. In compound 3 the central Pt atom is linked to two $(CO)₄Re(\mu-$ H)Re(CO)₄ moieties *via* four Pt(μ -H)Re bonds, while, in compound **4**, all but one of the Pt-Re edges are μ_2 bridged by hydrido ligands. The presence of the hydrido ligands is evidenced by the metal-metal bond lengths pattern, the relative orientation of the four $Re(CO)_4$ units (which have their local C_2 symmetry axis not always lying in the pertinent PtRe2 plane) and/or the folding of the bow-tie (the dihedral angles between the two PtRe2 planes are 0 and **36.3"** in **3** and **4,** respectively). **8** In fact, if all the 'equatorial' carbonyl ligands and the metallic bow-tie were coplanar, the hydrides would also lie in that plane, giving unreasonable $H \cdots H$ contacts. Hence, in compound 3, the $(CO)_4$ Re(μ -H)Re($CO)_4$ moieties are rigidly rotated about the Re-Re vectors, in order to accommodate the four μ_2 hydrides two above and two below the PtRe4 plane. Different distortions occur in compound **4,** where two out of three Pt-bound μ_2 -H lie on the pertinent

 \ddagger *Crystal data* for 3: $C_{16}H_6O_{16}PtRe_4$; *M* = 1394.1, triclinic, space 112.88(2), β = 96.65(3), γ = 104.96(3)°, $U = 664(1)$ Å³, $F(000) = 608$, $Z = 1, D_c = 3.484 \text{ g cm}^{-3}, \text{Mo-K}\alpha \text{ radiation}, \gamma = 0.71073 \text{ Å},$ $\mu(Mo-K\alpha) = 237.8$ cm⁻¹. Intensities were measured on a CAD4 automatic diffractometer at room temperature; data were corrected for absorption and Lorentz-polarization effects. 2246 reflections, with $I > 3\sigma(I)$, were used in the structure refinements. The final *R* value was 0.028 ($R_w = 0.032$) group $P\overline{1}$ (No. 2), $a = 6.995(3)$, $b = 9.659(2)$, $c = 11.388(3)$ Å, $\alpha =$

Crystal data for 4: $C_{24}H_{25}NO_{16}P$ tRe₄; $M = 1523.3$, triclinic, space group *P*^T (No. 2), $a = 11.292(2)$, $b = 12.431(4)$, $c = 13.668(3)$ Å, $\alpha =$ $78.68(2)$, $\beta = 74.43(2)$, $\gamma = 86.23(2)$ °, $U = 1812(1)$ λ^3 , $F(000) = 1364$, $Z = 2$, $D_c = 2.792$ g cm⁻³, Mo-K α radiation, $\lambda = 0.71073\text{\AA}$, $\mu(\text{Mo-K}\alpha) = 174.5 \text{ cm}^{-1}$. Intensities were measured on a CAD4 automatic diffractometer at room temperature; data were corrected for absorption, Lorentz-polarization effects and decay. 4980 reflections, with $I > 3\sigma(I)$, were used in the structure refinements. The final *R* value was $0.033(R_w = 0.039)$.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn for structure **3** and at the Cambridge Crystallographic Data Centre for structure **4.** See Notice to Authors, Issue No. 1.

0 The hydrido ligands have been indirectly located, on the basis of the experimental heavy atoms stereochemistry, using atom pair potential computations.7

 \dagger ¹H NMR spectroscopic data for compound 2: (CD₂Cl₂, 233 K) δ 5.62 ReH), -16.03 (1, J_{H-Pt} 22 Hz, ReH). Compound 3: (CD₂Cl₂, 301 K) δ -13.33 (4 H, **JH-Pt** 720 *Hz,* ReH), -16.14 (2 **H,** ReH). Compound **4:** ReH). IR v(C0) cm-1 (CH2C12): compound **2** 2097m, 2056m, 2002vs, 1962s, 1918m; compound **3** 2105w, 2094m, 2032vs, 2012s, 1970m; compound **4** 2070sh, 2049m, 2006vs, 1975s, 1956sh, 1933s, 1912m. Preliminary X-ray diffraction results confirm the structure of compound **2** reported in Scheme 1. (4 H J_{H-Pt} 55 Hz, CH), 2.01 (8 H, CH₂), -9.17 (1 H J_{H-Pt} 745 Hz, $(C_4D_8O, 298 K) \delta -8.36 (3 H, J_{H-Pt} 770 Hz, ReH), -16.41 (2 H,$

PtRe₂ planes, but the planarity of the PtRe₄ moiety is lost together with the local $C_{2\nu}$ symmetry of the two $(CO)_4$ Re(μ - H) $Re(CO)₄$ moieties.

A relevant conformational parameter for bow-tie clusters M_4M' is ω , *i.e.* the dihedral angle between the two M_2M' planes. When the central atom carries many ligands, like in the series $Os_5(CO)_{19}$,⁸ $Os_5(CO)_{16}$ {P(OMe)₃}₃⁹ and $Os_5(CO)_{17}(\text{HCCH})$,¹⁰ ω is considered to be driven by steric interactions. We have shown that the folding of the PtRe, moiety, in compound **4,** is due to steric effects, nevertheless we think that larger deviations from planarity are electronically forbidden because a value of *cu* close to 0 or to 90" implies a square planar or a tetrahedral central atom and then a different electron count (see for instance the structure of $[Rh_4Pt(CO)_2(CF_3C_2CF_3)_2(C_5H_5)_4]$ with $\omega = 90^\circ$ and 78 $v.e.s$).¹¹

We thank the Italian Ministero della Ricerca Scientifica and the 'Progetto Finalizzato Chimica Fine **11'** of Italian CNR for financial support.

Received, 3rd June 1991; Corn. 1102627E

References

- **1** F. G. **A.** Stone, *Angew. Chem., Znt. Ed. Engl.,* **1984, 23, 89.**
- **2** G. Ciani, M. Moret, A. Sironi, T. Beringhelli, G. D'Alfonso and R. Della Pergola, *J. Chem. SOC., Chem. Commun.,* **1990, 1668.**
- **3 T.** Beringhelli, **A.** Ceriotti, G. D'Alfonso, R. Della Pergola, G. Ciani, M. Moret and A. Sironi, *Organometallics,* **1990, 9, 1053.**
- **4** M. Green, J. A. K. Howard, G. N. Pain and F. G. A. Stone, *J. Chem.* **SOC.,** *Dalton Trans.,* **1982, 1327.**
- *⁵*G. Longoni, M. Manassero and M. Sansoni, J. *Am. Chem.* **SOC., 1980, 102,3242.**
- **6 S.** Otsuka, **T.** Yoshida, M. Matsumoto and K. Nakatsu, J. *Am. Chem.* **SOC., 1976,98,5850.**
- **7** A. G. Orpen, J. *Chem. SOC., Dalton Trans.,* **1980, 2509.**
- **8** D. **H.** Farrar, B. F. G. Johnson, J. Lewis, J. N. Nicholls, P. R. Raithby and M. J. Rosales, J. *Chem.* **Soc.,** *Chem. Commun.,* **1981,273.**
- **9** D. **H.** Farrar, B. F. G. Johnson, J. Lewis, P. R. Raithby and M. J. Rosales, J. *Chem.* **SOC.,** *Dalton Trans.,* **1982, 2051.**
- **10 B. F.** G. Johnson, J. Lewis, P. R. Raithby and M. J. Rosales, J. *Chem.* **SOC.,** *Dalton Trans.,* **1983, 2645.**
- **11** R. **S.** Dickson, G. D. Fallon, M. J. Liddell, B. W. Skelton and A. H. White, J. *Organomet. Chem.,* **1987, 327, C51.**